TY - JOUR
T1 - Compact T(1) theorem à la Stein
AU - Bényi, Árpád
AU - Li, Guopeng
AU - Oh, Tadahiro
AU - Torres, Rodolfo H.
N1 - Publisher Copyright:
© 2025 Elsevier Inc.
PY - 2025/10/1
Y1 - 2025/10/1
N2 - We prove a compact T(1) theorem, involving quantitative estimates, analogous to the quantitative classical T(1) theorem due to Stein. We also discuss the Cc∞-to-CMO mapping properties of non-compact Calderón-Zygmund operators as well as the sequential completeness properties of some subspaces of BMO under different topologies.
AB - We prove a compact T(1) theorem, involving quantitative estimates, analogous to the quantitative classical T(1) theorem due to Stein. We also discuss the Cc∞-to-CMO mapping properties of non-compact Calderón-Zygmund operators as well as the sequential completeness properties of some subspaces of BMO under different topologies.
KW - Calderón-Zygmund operator
KW - Compactness
KW - Continuous mean oscillation
KW - T(1) theorem
UR - http://www.scopus.com/inward/record.url?scp=105005652728&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105005652728&partnerID=8YFLogxK
U2 - 10.1016/j.jfa.2025.111052
DO - 10.1016/j.jfa.2025.111052
M3 - Article
AN - SCOPUS:105005652728
SN - 0022-1236
VL - 289
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
IS - 7
M1 - 111052
ER -